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1. We need to show that for all x ∈ Q

| x |∞ ·
∏
p

| x |p= 1

This is true because by factoring we have that for any x ∈ Q | x |∞=| m |∞

/ | n |∞=
∏
p
pip where ip ∈ Z and for almost all primes ip = 0. On the other

hand | x |p=| m |p / | n |p= p−ip . This implies that
∏
p

| x |p=| x |−1∞ , as

required.

2. (a) We need to show that Bε(a) is closed, or equivilantly that Bε(a)
c

is open. This is true becasue if x ∈ Bε(a)
c and y ∈ Bε(x), then d(y, a) =

max(d(x, y), d(x, a)) ≥ ε (because d(x, y) 6= d(x, a)). So Bε(x) ⊆ Bε(a)
c and

therefore Bε(a)
c is open.

(b) We need to show that every point in Bε(a) is its center, i.e that for

any x ∈ Bε(a) we have Bε(x) = Bε(a). By symmertry it su�ces to show that

Bε(x) ⊆ Bε(a), which is true because for any y ∈ Bε(x) we have d(y, a) ≤

max(d(x, a), d(x, y)) ≤ ε.

(c) This is true because the p-adic norm only takes values in the countable

set {pm | m ∈ Z}, and therefore Bε(0) = Bpm(0) for some m ∈ Z.

3. (a) We need to show that the cantor set is homeomorphic to Zp. The
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�rst space is homeomorphic to{0, 1}N, and the latter to {0, 1, .., p− 1}N (Zp and

{0, 1, ..p− 1}Z are in obvious bijection, ans this bijection is a homeomorphism

because the topology on Zp is induced by the inverse limit of discrete spaces

Z/Zpn), so it su�ces to show that these two spaces are homeomorphic. Note that

each of these spaces is metrizable (as a countable products of metrizable spaces),

compact (by Tychonov's theorem), totally disconnected (as a product of totally

disconnected spaces) and perfect. We'll prove the following, more general claim:

Any two compact, totally disconnected perfect metric spaces are homeomorphic.

Let M be such a space. First we show that M is homeomorphic to a certain

inverse limit of discrete �nite subsets. First note that for any n ∈ N , any cover

of M has a �nite re�nement consisting of disjoint clopen sets of diameter≤ 1/n.

Indeed, this follows from question 6 and from the fact that open balls generate

the topology of M. Now consider the sequence V1, V2, ... of �nite covers, such

that Vi consists of clopen disjoint sets of diameter≤ 1/i and Vi+1 is a re�nement

of Vi. We give all of these sets the discrete topology and consider the inverse

system ({Vn} , in) with respect to the maps in : Vn → Vn−1 where in(U) is

the unique (from disjointness) element of Vn−1 containing U . Let L = lim
←

Vn

be the inverse limit of this system. We claim that M is homeomorphic to L:

indeed, consider the map g that takes x ∈ M to the sequence {Un(x)} ∈ L

where Un(x) is the unique element of the cover Vn containing x. Note that this

map is injective because the diameter of sets in Vn is ≤ 1/n, and surjective by

the �nite intersection property (as the sets are closed as well as open). g is

clearly continuous as well, because g−1({{Xn} ∈ L;Xm = U ∈ Vm} = U which

is open. As a continuous bijection from a compact haussdorf space, g is a

homeomorphism. Now let M1,M2 be two compact, totally disconnected perfect

metric spaces. We want to build a sequences of covers {An} , {Bn} of M1,M2

with inverse systems ({An} , iAn ), ({Bn} , iBn ) (de�ned as before) whose inverse
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limits are homeomorphic. We do this as follows: Start with two arbitrary

sequences {An} , {Bn} .We �rst claim that given an open subset U of either

space covered by n disjoint clopen sets K1, ...,Kn, one can �nd a disjoint clopen

re�nement consisting of m sets, for any m ≥ n. Indeed, K1 isn't a singleton

because it's open, so it's not connected. Therefore we have K1 = A ∪ B for

some disjoint clopen sets A,B . Repeating this process n − m times gets us

the required re�nement. Now if | A1 |<| B1 | we re�ne decompose some set

in A1 into | B1 | − | A1 | +1 disjoint clopen sets to o�set the di�erence.

We'll abuse notation and call these covers A1, B1 as well. So assume | A1 |=|

B1 |and take some bejection f1 :| A1 |→| B1 | . Now we re�ne A2, B2 in

the same way (again abusing notation) so that | A2 |=| B2 | and for each

x ∈ A1we have | iA2 (x)−1 |=| iB2 (f(x))−1 |(i.e x is decomposed into as many

parts in A2 as f(x) is in B2). We then take a bijection f2 : A2 → B2 such that

f1 ◦ iA2 = iB2 ◦ f2. Continuing in this fashion we get a sequence of bijections

{fn :| An |→| Bn |}such that fn ◦ iAn−1 = iBn+1 ◦ fn+1. These maps then induce

a map f : lim
←

An → lim
←

Bn by f({an}) = {f(an)} (where an ∈ An). We claim

that f is our required homeomorphism: indeed, f is clearly a bijection because

fn are for all n, and continuity is obvious because fn are all continous (being

maps from discrete spacces). The continuity of the inverse is also clear (because

f−1 is induced by f−1n :| Bn |→| An | in the same way). We conclude that M1,

and M2 are homeomorphic, and in particular so are {0, 1}N and {0, 1, .., p− 1}N.

(b) Note that Qp is homeomorphic to the countable disjoint union of the sets

Qp(a1, ..., ak) = {x ∈ Qp : x = .... � a1..ak} (numbers with a given �nite p-adic

expansion after the p-cimal point). These sets are clearly all homeomorphic to

Zp, which in turn is homemorphic to the cantor set C = {0, 1}N. Therefore it

su�ces to show that C−{x0} is homeomorphic to a disjoint union of cantor sets⊔
i∈N

Ci. But this is easy, because {0, 1}N−{x0} =
⊔
i∈N

{
x ∈ {0, 1}N : min

j∈N
(x(j) 6= x0(j)) = i

}
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and this is a disjoint union of sets that are again clearly hoemeomorphic to C.

(c) Qp,Zp are both of cardinality c (being countable unions of sets of cardi-

nality c) , and both are totally disconnected (so their connected componenets

are singletons).

4. Consider X = {0, 1}R with the product topology (where every copy

of{0, 1} is discrete). X is totally disconnected as a product of totally discon-

nected spaces. For x1 6= x2, take a ∈ R such that x1(a) 6= x2(a). Then

U1 = {x ∈ X;x(a) = x1(a)}, U2 = {x ∈ X;x(a) = x2(a)} are disjoint open

neighborhoods of x1, x2respectively. So X is haussdorf. Finally, by Tychono�'s

theorem X is compact (and in particular locally compact). Thus X is a com-

pact ` space. Now consider the subset U = X − {x0} for some point x0 ∈ X.

We claim that U isn't countable at ∞. Indeed, if this were the case then any

open cover of U would have a countable subcover, becuase U=
⋃∞

n=1 Kn where

Knare compact, and each one of those sets has a �nite subcover. However the

open sets Ba = {x ∈ X;x(a) 6= x0(a)}for a ∈ R cover U , and this cover has no

countable subcover (by the uncountability of R).

5. We need to show that any non-archimedian �eld F is an ` space, i.e

a totally disconnected, locally compact haussdorf space. We have local com-

pactness by de�nition. For x 6= y we have | x − y |= a > 0, by the triangle

inequality Ba/2(x) ∩ Ba/2(y) = Ø. So F is haussdorf. Note that by question

2 all balls in F are clopen (the exact same argument applies), and we have⋂
a>0

Ba(x) = {x}, so the quasi componenets (i.e the intersection of all clopen

sets containing a point, which coincide with connected components for locally

compact Haussdorf spaces) are all singletons and F is totally disconnected, and

we are done.

6. (a) We need to show that any `space X has a basis of open compact sets.

Let x ∈ X, and let U be an open subset of X with x ∈ U . As a Haussdorf,
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locally-compact space X has a local basis of open sets with compact closure,

so there's an open set s.t x ∈ V⊆ U with cl(V ) compact. Note that cl(V ) is

totally disconnected as a subspace of a totally disconnected space, and because

it's compact it is totally seperated, so the intersection of all clopen subsets of

cl(V ) is {x}, i.e for every point y 6= x there's a clopen subset of cl(V ), which

we denote by B(y), that doesn't contain y. This means that its complement in

cl(V ), which we denote by C(y), is a clopen subset that does contain y. Now

V, {C(y);x 6= y ∈ cl(V )}.together form an open cover of cl(V ). By compactness

there's a �nite subcover V,C(y1), ..., C(yn). Then x ∈
⋂n

i=1 B(yi) ⊆ V . We

claim that this subset is compact and open in X. Indeed, this subset is open

in V , which is open in X, so it's open in X as well. The subset is compact in

X because it's a closed subset of the compact space cl(V ). So we have found a

compact open subset of U containing x. Thus X has a basis of compact open

sets.

(b) We need to show that given a compact subset K ⊆ X, any open cover

of K has a �nite re�nement of disjoint open compact sets covering K. Let

K ⊆
⋃

β∈I Vβ be an open cover. By (a) we can take a re�nement {Uα;α ∈ J} of

compact-open sets. Note that because X is Haussdorf these sets are all closed

as well. Now by the compactness of K there exists a �nite subcover U1, ..., Un.

Now consider the cover B1 = U1, Bi = Ui

⋂j=i−1
j=1 U c

j for i ≥ 2. These sets are

open as �nite intersections of open sets, compact as closed subsets of compact

sets (Bi ⊆ Ui), and disjoint by construction. So we've found a �nite re�nement

consisting of compact, disjoint sets.
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