Generalized Functions- Exercise 4

Yotam Alexander

April 6, 2016

1. We need to show that for all z € Q
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This is true because by factoring we have that for any z € Q | 2 |o=| ™M |
/ | n = [Ip"» where i, € Z and for almost all primes i, = 0. On the other
hand | « |pp:| m |, / | n|p= p~ . This implies that [] | = |,=| = |3}, as
required. ’

2. (a) We need to show that B.(a) is closed, or equivilantly that B.(a)®
is open. This is true becasue if x € B.(a)® and y € B.(z), then d(y,a) =
max(d(z,y),d(z,a)) > ¢ (because d(x,y) # d(x,a)). So Be(z) C B:(a)® and
therefore B.(a)¢ is open.

(b) We need to show that every point in B.(a) is its center, i.e that for
any x € B.(a) we have B.(x) = B.(a). By symmertry it suffices to show that
B.(x) C B:(a), which is true because for any y € B.(z) we have d(y,a) <
max(d(z,a),d(z,y)) <e.

(c) This is true because the p-adic norm only takes values in the countable

set {p” | m € Z}, and therefore B.(0) = B,m(0) for some m € Z.

3. (a) We need to show that the cantor set is homeomorphic to Z,. The



first space is homeomorphic to{0,1}", and the latter to {0,1,..,p — 1}" (Z, and
{0,1,..p — 1}Z are in obvious bijection, ans this bijection is a homeomorphism
because the topology on Z, is induced by the inverse limit of discrete spaces
Z]Zyn), so it suffices to show that these two spaces are homeomorphic. Note that
each of these spaces is metrizable (as a countable products of metrizable spaces),
compact (by Tychonov’s theorem), totally disconnected (as a product of totally
disconnected spaces) and perfect. We’'ll prove the following, more general claim:
Any two compact, totally disconnected perfect metric spaces are homeomorphic.
Let M be such a space. First we show that M is homeomorphic to a certain
inverse limit of discrete finite subsets. First note that for any n € N, any cover
of M has a finite refinement consisting of disjoint clopen sets of diameter< 1/n.
Indeed, this follows from question 6 and from the fact that open balls generate
the topology of M. Now consider the sequence Vi, Vs, ... of finite covers, such
that V; consists of clopen disjoint sets of diameter< 1/i and V41 is a refinement
of V;. We give all of these sets the discrete topology and consider the inverse
system ({V,,},i,) with respect to the maps i, : V,, — V,,_1 where i,(U) is
the unique (from disjointness) element of V,,_; containing U. Let L = lzZnV”
be the inverse limit of this system. We claim that M is homeomorphic to L:
indeed, consider the map ¢ that takes € M to the sequence {U,(z)} € L
where U, () is the unique element of the cover V,, containing z. Note that this
map is injective because the diameter of sets in V;, is < 1/n, and surjective by
the finite intersection property (as the sets are closed as well as open). ¢ is
clearly continuous as well, because ¢! ({{X,} € L; X,,, = U € V,;,} = U which
is open. As a continuous bijection from a compact haussdorf space, g is a
homeomorphism. Now let M7, M5 be two compact, totally disconnected perfect
metric spaces. We want to build a sequences of covers {A,},{B,} of My, My

with inverse systems ({A,},i3), ({B,},i2) (defined as before) whose inverse



limits are homeomorphic. We do this as follows: Start with two arbitrary
sequences {A,},{B,} . We first claim that given an open subset U of either
space covered by n disjoint clopen sets K7, ..., K, one can find a disjoint clopen
refinement consisting of m sets, for any m > n. Indeed, Kj isn’t a singleton
because it’s open, so it’s not connected. Therefore we have K1 = AU B for
some disjoint clopen sets A, B . Repeating this process n — m times gets us
the required refinement. Now if | A; |<| B; | we refine decompose some set
in Ay into | By | — | 41 | 41 disjoint clopen sets to offset the difference.

We’ll abuse notation and call these covers A, By as well. So assume | A; |=|

B; |and take some bejection f; :| A; |—=| By | . Now we refine Ay, By in
the same way (again abusing notation) so that | Ay |=| Bz | and for each
x € Aywe have | if'(z)"" |=| iZ(f(z))~! |(i.e = is decomposed into as many

parts in As as f(x) is in By). We then take a bijection fs : Ay — Bg such that
f1 08 = if o f,. Continuing in this fashion we get a sequence of bijections
{fn:| An |=| By, |}such that f, 0i2 | =iP | o f,41. These maps then induce
amap [ : lzlnAn — lzlan by f({an}) = {f(an)} (where a,, € 4,,). We claim
that f is our required homeomorphism: indeed, f is clearly a bijection because
fn are for all n, and continuity is obvious because f, are all continous (being
maps from discrete spacces). The continuity of the inverse is also clear (because
f~1 is induced by f, ! :| B, |=| A, | in the same way). We conclude that M,
and Ms are homeomorphic, and in particular so are {0, 1}N and {0,1,..,p — I}N.

(b) Note that Q, is homeomorphic to the countable disjoint union of the sets
Qplat,...,ar) = {r € Qp:x=...a01..a} (numbers with a given finite p-adic
expansion after the p-cimal point). These sets are clearly all homeomorphic to
Zp, which in turn is homemorphic to the cantor set C' = {0,1}". Therefore it

suffices to show that C'—{z¢} is homeomorphic to a disjoint union of cantor sets

|| C;. But this is easy, because {0, 1} —{zo} = || {m e {0, 13" : min(z(j) # 20(4)) = z}
iEN iEN JEN



and this is a disjoint union of sets that are again clearly hoemeomorphic to C.

(¢) Qp, Z, are both of cardinality ¢ (being countable unions of sets of cardi-
nality ¢) , and both are totally disconnected (so their connected componenets
are singletons).

4. Consider X = {0, 1}]R with the product topology (where every copy
of{0, 1} is discrete). X is totally disconnected as a product of totally discon-
nected spaces. For x; # z3, take a € R such that z1(a) # x2(a). Then
Uy = {zx € X;2(a) =21(a)}, Uz = {z € X;2(a) =x2(a)} are disjoint open
neighborhoods of x7, zorespectively. So X is haussdorf. Finally, by Tychonoff’s
theorem X is compact (and in particular locally compact). Thus X is a com-
pact £ space. Now consider the subset U = X — {xo} for some point zy € X.
We claim that U isn’t countable at oo. Indeed, if this were the case then any
open cover of U would have a countable subcover, becuase U:Uff:l K,, where
K are compact, and each one of those sets has a finite subcover. However the
open sets B, = {z € X;z(a) # xo(a) Hor a € R cover U, and this cover has no
countable subcover (by the uncountability of R).

5. We need to show that any non-archimedian field F' is an ¢ space, i.e
a totally disconnected, locally compact haussdorf space. We have local com-
pactness by definition. For z # y we have | z — y |= a > 0, by the triangle
inequality B,/o(x) N Bgj2(y) = ©. So F' is haussdorf. Note that by question
2 all balls in F are clopen (the exact same argument applies), and we have
) B.(z) = {x}, so the quasi componenets (i.e the intersection of all clopen
:gtos containing a point, which coincide with connected components for locally
compact Haussdorf spaces) are all singletons and F is totally disconnected, and
we are done.

6. (a) We need to show that any fspace X has a basis of open compact sets.

Let x € X, and let U be an open subset of X with z € U. As a Haussdorf,



locally-compact space X has a local basis of open sets with compact closure,
so there’s an open set s.t © € VC U with ¢l(V) compact. Note that cl(V) is
totally disconnected as a subspace of a totally disconnected space, and because
it’s compact it is totally seperated, so the intersection of all clopen subsets of
c(V) is {z}, i.e for every point y # x there’s a clopen subset of ¢l(V'), which
we denote by B(y), that doesn’t contain y. This means that its complement in
cl(V), which we denote by C(y), is a clopen subset that does contain y. Now
V,{C(y);xz # y € cl(V)}.together form an open cover of c/(V). By compactness
there’s a finite subcover V,C(y1),...,C(y,). Then z € (N, B(y;) € V. We
claim that this subset is compact and open in X. Indeed, this subset is open
in V| which is open in X, so it’s open in X as well. The subset is compact in
X because it’s a closed subset of the compact space ¢l(V). So we have found a
compact open subset of U containing x. Thus X has a basis of compact open
sets.

(b) We need to show that given a compact subset K C X, any open cover
of K has a finite refinement of disjoint open compact sets covering K. Let
K C Uger Vp be an open cover. By (a) we can take a refinement {Uy;a € J} of
compact-open sets. Note that because X is Haussdorf these sets are all closed
as well. Now by the compactness of K there exists a finite subcover Uy, ..., U,.
Now consider the cover By = Uy, B; = U; ﬂjz_l Us for ¢ > 2. These sets are
open as finite intersections of open sets, compact as closed subsets of compact
sets (B; C U;), and disjoint by construction. So we’ve found a finite refinement

consisting of compact, disjoint sets.



