Generalized Functions- Exercise 4

Yotam Alexander

April 6, 2016

1. We need to show that for all $x \in \mathbb{Q}$

$$\mid x \mid_{\infty} \cdot \prod_{p} \mid x \mid_{p} = 1$$

This is true because by factoring we have that for any $x \in \mathbb{Q} | x |_{\infty} = | m |_{\infty}$ / $| n |_{\infty} = \prod_{p} p^{i_{p}}$ where $i_{p} \in \mathbb{Z}$ and for almost all primes $i_{p} = 0$. On the other hand $| x |_{p} = | m |_{p} / | n |_{p} = p^{-i_{p}}$. This implies that $\prod_{p} | x |_{p} = | x |_{\infty}^{-1}$, as required.

2. (a) We need to show that $B_{\varepsilon}(a)$ is closed, or equivilantly that $B_{\varepsilon}(a)^c$ is open. This is true becasue if $x \in B_{\varepsilon}(a)^c$ and $y \in B_{\varepsilon}(x)$, then $d(y,a) = max(d(x,y), d(x,a)) \geq \varepsilon$ (because $d(x,y) \neq d(x,a)$). So $B_{\varepsilon}(x) \subseteq B_{\varepsilon}(a)^c$ and therefore $B_{\varepsilon}(a)^c$ is open.

(b) We need to show that every point in $B_{\varepsilon}(a)$ is its center, i.e that for any $x \in B_{\varepsilon}(a)$ we have $B_{\varepsilon}(x) = B_{\varepsilon}(a)$. By symmetry it suffices to show that $B_{\varepsilon}(x) \subseteq B_{\varepsilon}(a)$, which is true because for any $y \in B_{\varepsilon}(x)$ we have $d(y, a) \leq max(d(x, a), d(x, y)) \leq \varepsilon$.

(c) This is true because the *p*-adic norm only takes values in the countable set $\{p^m \mid m \in \mathbb{Z}\}$, and therefore $B_{\varepsilon}(0) = B_{p^m}(0)$ for some $m \in \mathbb{Z}$.

3. (a) We need to show that the cantor set is homeomorphic to \mathbb{Z}_p . The

first space is homeomorphic to $\{0,1\}^{\mathbb{N}}$, and the latter to $\{0,1,..,p-1\}^{\mathbb{N}}$ (\mathbb{Z}_p and $\{0, 1, .., p-1\}^{\mathbb{Z}}$ are in obvious bijection, and this bijection is a homeomorphism because the topology on \mathbb{Z}_p is induced by the inverse limit of discrete spaces $\mathbb{Z}/\mathbb{Z}_{p^n}$), so it suffices to show that these two spaces are homeomorphic. Note that each of these spaces is metrizable (as a countable products of metrizable spaces), compact (by Tychonov's theorem), totally disconnected (as a product of totally disconnected spaces) and perfect. We'll prove the following, more general claim: Any two compact, totally disconnected perfect metric spaces are homeomorphic. Let M be such a space. First we show that M is homeomorphic to a certain inverse limit of discrete finite subsets. First note that for any $n \in N$, any cover of M has a finite refinement consisting of disjoint clopen sets of diameter $\leq 1/n$. Indeed, this follows from question 6 and from the fact that open balls generate the topology of M. Now consider the sequence $V_1, V_2, ...$ of finite covers, such that V_i consists of clopen disjoint sets of diameter $\leq 1/i$ and V_{i+1} is a refinement of V_i . We give all of these sets the discrete topology and consider the inverse system $({V_n}, i_n)$ with respect to the maps $i_n : V_n \to V_{n-1}$ where $i_n(U)$ is the unique (from disjointness) element of V_{n-1} containing U. Let $L = \lim_{n \to \infty} V_n$ be the inverse limit of this system. We claim that M is homeomorphic to L: indeed, consider the map g that takes $x \in M$ to the sequence $\{U_n(x)\} \in L$ where $U_n(x)$ is the unique element of the cover V_n containing x. Note that this map is injective because the diameter of sets in V_n is $\leq 1/n$, and surjective by the finite intersection property (as the sets are closed as well as open). g is clearly continuous as well, because $g^{-1}(\{X_n\} \in L; X_m = U \in V_m\} = U$ which is open. As a continuous bijection from a compact haussdorf space, g is a homeomorphism. Now let M_1, M_2 be two compact, totally disconnected perfect metric spaces. We want to build a sequences of covers $\{A_n\}, \{B_n\}$ of M_1, M_2 with inverse systems $(\{A_n\}, i_n^A), (\{B_n\}, i_n^B)$ (defined as before) whose inverse

limits are homeomorphic. We do this as follows: Start with two arbitrary sequences $\{A_n\}, \{B_n\}$. We first claim that given an open subset U of either space covered by n disjoint clopen sets $K_1, ..., K_n$, one can find a disjoint clopen refinement consisting of m sets, for any $m \ge n$. Indeed, K_1 isn't a singleton because it's open, so it's not connected. Therefore we have $K_1 = A \cup B$ for some disjoint clopen sets A, B. Repeating this process n - m times gets us the required refinement. Now if $|A_1| < |B_1|$ we refine decompose some set in A_1 into $|B_1| - |A_1| + 1$ disjoint clopen sets to offset the difference. We'll abuse notation and call these covers A_1, B_1 as well. So assume $|A_1| = |$ B_1 |and take some bejection f_1 : | A_1 $|{\rightarrow}|$ B_1 | . Now we refine A_2,B_2 in the same way (again abusing notation) so that $\mid A_2 \mid = \mid B_2 \mid$ and for each $x \in A_1$ we have $\mid i_2^A(x)^{-1} \mid = \mid i_2^B(f(x))^{-1} \mid (\text{i.e } x \text{ is decomposed into as many})$ parts in A_2 as f(x) is in B_2). We then take a bijection $f_2: A_2 \to B_2$ such that $f_1 \circ i_2^A = i_2^B \circ f_2$. Continuing in this fashion we get a sequence of bijections $\{f_n : |A_n| \rightarrow |B_n|\}$ such that $f_n \circ i_{n-1}^A = i_{n+1}^B \circ f_{n+1}$. These maps then induce a map $f: \underset{\leftarrow}{lim}A_n \to \underset{\leftarrow}{lim}B_n$ by $f(\{a_n\}) = \{f(a_n)\}$ (where $a_n \in A_n$). We claim that f is our required homeomorphism: indeed, f is clearly a bijection because f_n are for all n, and continuity is obvious because f_n are all continuous (being maps from discrete spacees). The continuity of the inverse is also clear (because f^{-1} is induced by $f_n^{-1} :| B_n | \to | A_n |$ in the same way). We conclude that $M_{1,2}$ and M_2 are homeomorphic, and in particular so are $\{0,1\}^{\mathbb{N}}$ and $\{0,1,..,p-1\}^{\mathbb{N}}$.

(b) Note that \mathbb{Q}_p is homeomorphic to the countable disjoint union of the sets $\mathbb{Q}_p(a_1, ..., a_k) = \{x \in Q_p : x = \cdot a_1...a_k\}$ (numbers with a given finite p-adic expansion after the p-cimal point). These sets are clearly all homeomorphic to \mathbb{Z}_p , which in turn is homemorphic to the cantor set $C = \{0, 1\}^{\mathbb{N}}$. Therefore it suffices to show that $C - \{x_0\}$ is homeomorphic to a disjoint union of cantor sets $\bigsqcup_{i \in N} C_i$. But this is easy, because $\{0, 1\}^{\mathbb{N}} - \{x_0\} = \bigsqcup_{i \in N} \left\{ x \in \{0, 1\}^{\mathbb{N}} : \min_{j \in N} (x(j) \neq x_0(j)) = i \right\}$ and this is a disjoint union of sets that are again clearly hoemeomorphic to C.

(c) $\mathbb{Q}_p, \mathbb{Z}_p$ are both of cardinality c (being countable unions of sets of cardinality c), and both are totally disconnected (so their connected componenets are singletons).

4. Consider $X = \{0,1\}^{\mathbb{R}}$ with the product topology (where every copy of $\{0,1\}$ is discrete). X is totally disconnected as a product of totally disconnected spaces. For $x_1 \neq x_2$, take $a \in R$ such that $x_1(a) \neq x_2(a)$. Then $U_1 = \{x \in X; x(a) = x_1(a)\}, U_2 = \{x \in X; x(a) = x_2(a)\}$ are disjoint open neighborhoods of x_1, x_2 respectively. So X is haussdorf. Finally, by Tychonoff's theorem X is compact (and in particular locally compact). Thus X is a compact ℓ space. Now consider the subset $U = X - \{x_0\}$ for some point $x_0 \in X$. We claim that U isn't countable at ∞ . Indeed, if this were the case then any open cover of U would have a countable subcover, because $U = \bigcup_{n=1}^{\infty} K_n$ where K_n are compact, and each one of those sets has a finite subcover. However the open sets $B_a = \{x \in X; x(a) \neq x_0(a)\}$ for $a \in R$ cover U, and this cover has no countable subcover (by the uncountability of R).

5. We need to show that any non-archimedian field F is an ℓ space, i.e a totally disconnected, locally compact haussdorf space. We have local compactness by definition. For $x \neq y$ we have |x - y| = a > 0, by the triangle inequality $B_{a/2}(x) \cap B_{a/2}(y) = \emptyset$. So F is haussdorf. Note that by question 2 all balls in F are clopen (the exact same argument applies), and we have $\bigcap_{a>0} B_a(x) = \{x\}$, so the quasi components (i.e the intersection of all clopen sets containing a point, which coincide with connected components for locally compact Haussdorf spaces) are all singletons and F is totally disconnected, and we are done.

6. (a) We need to show that any ℓ space X has a basis of open compact sets. Let $x \in X$, and let U be an open subset of X with $x \in U$. As a Haussdorf, locally-compact space X has a local basis of open sets with compact closure, so there's an open set s.t $x \in V \subseteq U$ with cl(V) compact. Note that cl(V) is totally disconnected as a subspace of a totally disconnected space, and because it's compact it is totally seperated, so the intersection of all clopen subsets of cl(V) is $\{x\}$, i.e for every point $y \neq x$ there's a clopen subset of cl(V), which we denote by B(y), that doesn't contain y. This means that its complement in cl(V), which we denote by C(y), is a clopen subset that does contain y. Now $V, \{C(y); x \neq y \in cl(V)\}$.together form an open cover of cl(V). By compactness there's a finite subcover $V, C(y_1), ..., C(y_n)$. Then $x \in \bigcap_{i=1}^n B(y_i) \subseteq V$. We claim that this subset is compact and open in X. Indeed, this subset is open in V, which is open in X, so it's open in X as well. The subset is compact in X because it's a closed subset of the compact space cl(V). So we have found a compact open subset of U containing x. Thus X has a basis of compact open sets.

(b) We need to show that given a compact subset $K \subseteq X$, any open cover of K has a finite refinement of disjoint open compact sets covering K. Let $K \subseteq \bigcup_{\beta \in I} V_{\beta}$ be an open cover. By (a) we can take a refinement $\{U_{\alpha}; \alpha \in J\}$ of compact-open sets. Note that because X is Haussdorf these sets are all closed as well. Now by the compactness of K there exists a finite subcover $U_1, ..., U_n$. Now consider the cover $B_1 = U_1$, $B_i = U_i \bigcap_{j=1}^{j=i-1} U_j^c$ for $i \ge 2$. These sets are open as finite intersections of open sets, compact as closed subsets of compact sets $(B_i \subseteq U_i)$, and disjoint by construction. So we've found a finite refinement consisting of compact, disjoint sets.