Generalized Functions- Exercise 4

Yotam Alexander

April 6, 2016

1. We need to show that for all $x \in \mathbb{Q}$

$$
|x|_{\infty} \cdot \prod_{p}|x|_{p}=1
$$

This is true because by factoring we have that for any $x \in \mathbb{Q}|x|_{\infty}=|m|_{\infty}$ $/|n|_{\infty}=\prod_{p} p^{i_{p}}$ where $i_{p} \in \mathbb{Z}$ and for almost all primes $i_{p}=0$. On the other hand $|x|_{p}=|m|_{p} /|n|_{p}=p^{-i_{p}}$. This implies that $\prod_{p}|x|_{p}=|x|_{\infty}^{-1}$, as required.
2. (a) We need to show that $B_{\varepsilon}(a)$ is closed, or equivilantly that $B_{\varepsilon}(a)^{c}$ is open. This is true becasue if $x \in B_{\varepsilon}(a)^{c}$ and $y \in B_{\varepsilon}(x)$, then $d(y, a)=$ $\max (d(x, y), d(x, a)) \geq \varepsilon$ (because $d(x, y) \neq d(x, a))$. So $B_{\varepsilon}(x) \subseteq B_{\varepsilon}(a)^{c}$ and therefore $B_{\varepsilon}(a)^{c}$ is open.
(b) We need to show that every point in $B_{\varepsilon}(a)$ is its center, i.e that for any $x \in B_{\varepsilon}(a)$ we have $B_{\varepsilon}(x)=B_{\varepsilon}(a)$. By symmertry it suffices to show that $B_{\varepsilon}(x) \subseteq B_{\varepsilon}(a)$, which is true because for any $y \in B_{\varepsilon}(x)$ we have $d(y, a) \leq$ $\max (d(x, a), d(x, y)) \leq \varepsilon$.
(c) This is true because the p-adic norm only takes values in the countable set $\left\{p^{m} \mid m \in \mathbb{Z}\right\}$, and therefore $B_{\varepsilon}(0)=B_{p^{m}}(0)$ for some $m \in \mathbb{Z}$.
3. (a) We need to show that the cantor set is homeomorphic to \mathbb{Z}_{p}. The
first space is homeomorphic to $\{0,1\}^{\mathbb{N}}$, and the latter to $\{0,1, . ., p-1\}^{\mathbb{N}}\left(\mathbb{Z}_{p}\right.$ and $\{0,1, . . p-1\}^{\mathbb{Z}}$ are in obvious bijection, ans this bijection is a homeomorphism because the topology on \mathbb{Z}_{p} is induced by the inverse limit of discrete spaces $\mathbb{Z} / \mathbb{Z}_{p^{n}}$), so it suffices to show that these two spaces are homeomorphic. Note that each of these spaces is metrizable (as a countable products of metrizable spaces), compact (by Tychonov's theorem), totally disconnected (as a product of totally disconnected spaces) and perfect. We'll prove the following, more general claim: Any two compact, totally disconnected perfect metric spaces are homeomorphic. Let M be such a space. First we show that M is homeomorphic to a certain inverse limit of discrete finite subsets. First note that for any $n \in N$, any cover of M has a finite refinement consisting of disjoint clopen sets of diameter $\leq 1 / n$. Indeed, this follows from question 6 and from the fact that open balls generate the topology of M. Now consider the sequence V_{1}, V_{2}, \ldots of finite covers, such that V_{i} consists of clopen disjoint sets of diameter $\leq 1 / i$ and V_{i+1} is a refinement of V_{i}. We give all of these sets the discrete topology and consider the inverse system $\left(\left\{V_{n}\right\}, i_{n}\right)$ with respect to the maps $i_{n}: V_{n} \rightarrow V_{n-1}$ where $i_{n}(U)$ is the unique (from disjointness) element of V_{n-1} containing U. Let $L=\underset{\leftarrow}{\lim } V_{n}$ be the inverse limit of this system. We claim that M is homeomorphic to L : indeed, consider the map g that takes $x \in M$ to the sequence $\left\{U_{n}(x)\right\} \in L$ where $U_{n}(x)$ is the unique element of the cover V_{n} containing x. Note that this map is injective because the diameter of sets in V_{n} is $\leq 1 / n$, and surjective by the finite intersection property (as the sets are closed as well as open). g is clearly continuous as well, because $g^{-1}\left(\left\{\left\{X_{n}\right\} \in L ; X_{m}=U \in V_{m}\right\}=U\right.$ which is open. As a continuous bijection from a compact haussdorf space, g is a homeomorphism. Now let M_{1}, M_{2} be two compact, totally disconnected perfect metric spaces. We want to build a sequences of covers $\left\{A_{n}\right\},\left\{B_{n}\right\}$ of M_{1}, M_{2} with inverse systems $\left(\left\{A_{n}\right\}, i_{n}^{A}\right),\left(\left\{B_{n}\right\}, i_{n}^{B}\right)$ (defined as before) whose inverse
limits are homeomorphic. We do this as follows: Start with two arbitrary sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$. We first claim that given an open subset U of either space covered by n disjoint clopen sets K_{1}, \ldots, K_{n}, one can find a disjoint clopen refinement consisting of m sets, for any $m \geq n$. Indeed, K_{1} isn't a singleton because it's open, so it's not connected. Therefore we have $K_{1}=A \cup B$ for some disjoint clopen sets A, B. Repeating this process $n-m$ times gets us the required refinement. Now if $\left|A_{1}\right|<\left|B_{1}\right|$ we refine decompose some set in A_{1} into $\left|B_{1}\right|-\left|A_{1}\right|+1$ disjoint clopen sets to offset the difference. We'll abuse notation and call these covers A_{1}, B_{1} as well. So assume $\left|A_{1}\right|=\mid$ B_{1} and take some bejection $f_{1}:\left|A_{1}\right| \rightarrow\left|B_{1}\right|$. Now we refine A_{2}, B_{2} in the same way (again abusing notation) so that $\left|A_{2}\right|=\left|B_{2}\right|$ and for each $x \in A_{1}$ we have $\left|i_{2}^{A}(x)^{-1}\right|=\left|i_{2}^{B}(f(x))^{-1}\right|$ (i.e x is decomposed into as many parts in A_{2} as $f(x)$ is in B_{2}). We then take a bijection $f_{2}: A_{2} \rightarrow B_{2}$ such that $f_{1} \circ i_{2}^{A}=i_{2}^{B} \circ f_{2}$. Continuing in this fashion we get a sequence of bijections $\left\{f_{n}:\left|A_{n}\right| \rightarrow\left|B_{n}\right|\right.$ such that $f_{n} \circ i_{n-1}^{A}=i_{n+1}^{B} \circ f_{n+1}$. These maps then induce a map $f: \lim _{\leftarrow} A_{n} \rightarrow \lim B_{n}$ by $f\left(\left\{a_{n}\right\}\right)=\left\{f\left(a_{n}\right)\right\}$ (where $a_{n} \in A_{n}$). We claim that f is our required homeomorphism: indeed, f is clearly a bijection because f_{n} are for all n, and continuity is obvious because f_{n} are all continous (being maps from discrete spacces). The continuity of the inverse is also clear (because f^{-1} is induced by $f_{n}^{-1}:\left|B_{n}\right| \rightarrow\left|A_{n}\right|$ in the same way). We conclude that M_{1}, and M_{2} are homeomorphic, and in particular so are $\{0,1\}^{\mathbb{N}}$ and $\{0,1, \ldots, p-1\}^{\mathbb{N}}$.
(b) Note that \mathbb{Q}_{p} is homeomorphic to the countable disjoint union of the sets $\mathbb{Q}_{p}\left(a_{1}, \ldots, a_{k}\right)=\left\{x \in Q_{p}: x=\ldots . . a_{1} . . a_{k}\right\}$ (numbers with a given finite p-adic expansion after the p-cimal point). These sets are clearly all homeomorphic to \mathbb{Z}_{p}, which in turn is homemorphic to the cantor set $C=\{0,1\}^{\mathbb{N}}$. Therefore it suffices to show that $C-\left\{x_{0}\right\}$ is homeomorphic to a disjoint union of cantor sets $\bigsqcup_{i \in N} C_{i}$. But this is easy, because $\{0,1\}^{\mathbb{N}}-\left\{x_{0}\right\}=\bigsqcup_{i \in N}\left\{x \in\{0,1\}^{\mathbb{N}}: \min _{j \in N}\left(x(j) \neq x_{0}(j)\right)=i\right\}$
and this is a disjoint union of sets that are again clearly hoemeomorphic to C.
(c) $\mathbb{Q}_{p}, \mathbb{Z}_{p}$ are both of cardinality c (being countable unions of sets of cardinality c), and both are totally disconnected (so their connected componenets are singletons).
4. Consider $X=\{0,1\}^{\mathbb{R}}$ with the product topology (where every copy of $\{0,1\}$ is discrete). X is totally disconnected as a product of totally disconnected spaces. For $x_{1} \neq x_{2}$, take $a \in R$ such that $x_{1}(a) \neq x_{2}(a)$. Then $U_{1}=\left\{x \in X ; x(a)=x_{1}(a)\right\}, U_{2}=\left\{x \in X ; x(a)=x_{2}(a)\right\}$ are disjoint open neighborhoods of x_{1}, x_{2} respectively. So X is haussdorf. Finally, by Tychonoff's theorem X is compact (and in particular locally compact). Thus X is a compact ℓ space. Now consider the subset $U=X-\left\{x_{0}\right\}$ for some point $x_{0} \in X$. We claim that U isn't countable at ∞. Indeed, if this were the case then any open cover of U would have a countable subcover, becuase $U=\bigcup_{n=1}^{\infty} K_{n}$ where K_{n} are compact, and each one of those sets has a finite subcover. However the open sets $B_{a}=\left\{x \in X ; x(a) \neq x_{0}(a)\right\}$ for $a \in R$ cover U, and this cover has no countable subcover (by the uncountability of R).
5. We need to show that any non-archimedian field F is an ℓ space, i.e a totally disconnected, locally compact haussdorf space. We have local compactness by definition. For $x \neq y$ we have $|x-y|=a>0$, by the triangle inequality $B_{a / 2}(x) \cap B_{a / 2}(y)=\emptyset$. So F is haussdorf. Note that by question 2 all balls in F are clopen (the exact same argument applies), and we have $\bigcap_{a>0} B_{a}(x)=\{x\}$, so the quasi componenets (i.e the intersection of all clopen sets containing a point, which coincide with connected components for locally compact Haussdorf spaces) are all singletons and F is totally disconnected, and we are done.
6. (a) We need to show that any ℓ space X has a basis of open compact sets.

Let $x \in X$, and let U be an open subset of X with $x \in U$. As a Haussdorf,
locally-compact space X has a local basis of open sets with compact closure, so there's an open set s.t $x \in V \subseteq U$ with $\operatorname{cl}(V)$ compact. Note that $\operatorname{cl}(V)$ is totally disconnected as a subspace of a totally disconnected space, and because it's compact it is totally seperated, so the intersection of all clopen subsets of $c l(V)$ is $\{x\}$, i.e for every point $y \neq x$ there's a clopen subset of $\operatorname{cl}(V)$, which we denote by $B(y)$, that doesn't contain y. This means that its complement in $c l(V)$, which we denote by $C(y)$, is a clopen subset that does contain y. Now $V,\{C(y) ; x \neq y \in \operatorname{cl}(V)\}$.together form an open cover of $c l(V)$. By compactness there's a finite subcover $V, C\left(y_{1}\right), \ldots, C\left(y_{n}\right)$. Then $x \in \bigcap_{i=1}^{n} B\left(y_{i}\right) \subseteq V$. We claim that this subset is compact and open in X. Indeed, this subset is open in V, which is open in X, so it's open in X as well. The subset is compact in X because it's a closed subset of the compact space $\operatorname{cl}(V)$. So we have found a compact open subset of U containing x. Thus X has a basis of compact open sets.
(b) We need to show that given a compact subset $K \subseteq X$, any open cover of K has a finite refinement of disjoint open compact sets covering K. Let $K \subseteq \bigcup_{\beta \in I} V_{\beta}$ be an open cover. By (a) we can take a refinement $\left\{U_{\alpha} ; \alpha \in J\right\}$ of compact-open sets. Note that because X is Haussdorf these sets are all closed as well. Now by the compactness of K there exists a finite subcover U_{1}, \ldots, U_{n}. Now consider the cover $B_{1}=U_{1}, B_{i}=U_{i} \bigcap_{j=1}^{j=i-1} U_{j}^{c}$ for $i \geq 2$. These sets are open as finite intersections of open sets, compact as closed subsets of compact sets ($B_{i} \subseteq U_{i}$), and disjoint by construction. So we've found a finite refinement consisting of compact, disjoint sets.

